اضغط على الصورة للتكبير
"مدونة عرب تكنولوجيا" هي مرجعك الشامل لكل ما يتعلق بعالم الإلكترونيات والتكنولوجيا الحديثة. نهدف إلى تقديم محتوى تعليمي مبسّط ومفيد حول مكونات الإلكترونيات، مثل الترانزستورات، الدوائر المتكاملة، وأنواع الحساسات، بالإضافة إلى شروحات حول كيفية تصميم وتجميع الدوائر الإلكترونية. سواء كنت مبتدئًا تسعى لتعلم الأساسيات أو محترفًا تبحث عن معلومات متقدمة، ستجد في مدونتنا مقالات مفصلة، دروس تطبيقية، ونصائح عملية تساعدك في فهم أسرار عالم الإلكترونيات وتطوير مهاراتك فيه. تابعنا لتكون دائمًا على اطلاع
الاثنين، 21 ديسمبر 2009
التيار المتناوب
إن التيار المتناوب هو تيار دوري وتتغير جهته مرتين في كل دور وينقل في كل من الإتجاهين الكمية نفسها من الكهرباء وتسمي الفترة الزمنية التي يحافظ فيها التيار علي الجهة نفسها نوبة إذن الدور يتألف من نوبتين
أنواع محركات التيار المستمر
أنواع محركات التيار المستمر
تُعتبر محركات التيار المستمر من العناصر الأساسية في أنظمة الدفع الكهربائي، وتُستخدم على نطاق واسع في التطبيقات الصناعية والتجارية. تتنوع محركات التيار المستمر بناءً على طريقة توصيلها وتطبيقاتها. في هذا المقال، سنستعرض الأنواع المختلفة لمحركات التيار المستمر وخصائص كل نوع.
1. محركات التوالي (Series Motors)
تُعتبر محركات التوالي من الأنواع الأكثر استخدامًا في التطبيقات التي تتطلب عزم دوران عالي عند بدء التشغيل. يتم توصيل ملف المجال (Field winding) بالتوالي مع ملف التسرب (Armature winding)، مما يعني أن التيار المار في كلا الملفين هو نفسه. هذه الخاصية تتيح للمحرك إنتاج عزم دوران كبير عند بدء التشغيل، مما يجعله مناسبًا لتطبيقات مثل:
- الجرارات الكهربائية
- الأجهزة المنزلية الكبيرة
- المعدات الثقيلة
2. محركات التوازي (Shunt Motors)
تتميز محركات التوازي بتوصيل ملف المجال بالتوازي مع ملف التسرب. وهذا يعني أن جهد الملفين مختلف، مما يسمح للمحرك بالعمل عند سرعات ثابتة تقريبًا حتى مع تغير الحمولة. تُستخدم محركات التوازي في التطبيقات التي تتطلب سرعات متغيرة مثل:
- المراوح
- أجهزة التكييف
- المصاعد
3. المحركات المركبة (Compound Motors)
تجمع المحركات المركبة بين خصائص محركات التوالي والتوازي. تتميز بتوصيل ملف المجال بطريقتين:
-
محركات مركبة طويلة (Long Compound Motors):
تحتوي على ملف مجال توالي وملف مجال توازي، مما يوفر عزم دوران مرتفع وسرعة ثابتة. تُستخدم هذه المحركات في التطبيقات التي تتطلب توازنًا بين العزم والسرعة، مثل:
- المكائن الصناعية
- ماكينات الخياطة
-
محركات مركبة صغيرة (Short Compound Motors):
تتميز بملف مجال توازي أكبر نسبيًا مقارنة بملف المجال المتسلسل. تكون هذه المحركات أكثر قدرة على التحكم في السرعة، وتُستخدم عادةً في التطبيقات التي تحتاج إلى استجابة سريعة لتغيرات الحمولة، مثل:
- الأدوات الكهربائية
- أنظمة النقل
فوائد استخدام محركات التيار المستمر
تتمتع محركات التيار المستمر بالعديد من الفوائد التي تجعلها خيارًا شائعًا في التطبيقات الكهربائية:
- سهولة التحكم في السرعة: يمكن تعديل سرعة المحرك بسهولة عن طريق تغيير الجهد المطبق.
- عزم دوران مرتفع عند بدء التشغيل: مما يجعلها مناسبة للتطبيقات التي تتطلب بدء تشغيل قوي.
- بساطة التصميم: مما يسهل صيانتها وتشغيلها.
الخلاصة
تعد محركات التيار المستمر من العناصر الأساسية في العديد من التطبيقات الصناعية والتجارية. من خلال فهم الأنواع المختلفة من محركات التيار المستمر وخصائص كل منها، يمكن اختيار المحرك المناسب لتلبية احتياجات التطبيق المحدد. مع التقدم التكنولوجي المستمر، تظل هذه المحركات جزءًا مهمًا من أنظمة الدفع الكهربائي الحديثة.
مولدات التيار
المولِّد الكهربائي آلة لإنتاج الكهرباء. تنتج المولدات معظم الكهرباء التي يستخدمها الناس. فهي توفر القدرة الكهربائية التي تدير الآلات في المصانع، وتضيء المصابيح، وتشغِّل الأدوات المنزلية الكهربائية. وقد أطلق على المولد لفظ الدينامو اختصارًا للدينامو الكهربائي.
والمولد يمكن أن يكون صغير الحجم، بحيث يُمْسَك بيد واحدة. وتُستخدَم هذه المولدات الصغيرة في بعض الأجهزة العلمية لتوليد كهرباء تكفي لتحريك مؤشِّر على قرص مدرَّج. وقد يكون حجم المولد أكبر من حجم منزل، ويستطيع تزويد أكثر من مليون منزل بالقدرة الكهربائية.
ويُقاس حجم المولدات الكبيرة عادة بالكيلوواط حيث يساوي الكيلو واط الواحد 1,000 واط. وتستطيع المولدات الكبيرة إنتاج أكثر من مليون كيلوواط من الكهرباء.
المولدات الكهربائية عند السد توفر كميات هائلة من القدرة الكهربائية. وتدير التوربينات المائية تلك المولدات. ويشير المهندسون عادة إلى الجهاز الميكانيكي الذي يدير المولد بالمحركالأساسي.
وهناك نوعان رئيسيان من المولدات
مولدات التيار المستمر التي تنتج تياراً كهربائياً مستمرًا يسري في اتجاه واحد، ومولدات التيار المتناوب وتنتج تياراً كهربائياً يعكس اتجاهه مرات عديدة في كل ثانية. وكلا النوعين من المولدات تعمل بالمبادئ العلمية نفسها، ولكنهما يختلفان في كيفية التركيب والاستخدام.
كيف يعمل المولد
المباديء الأساسية
لا يَستحدِث المولد طاقة، ولكنه يحول الطاقة الميكانيكية إلى طاقة كهربائية، ولذا فإن كل مولد يديره توربين أو محرك ديزل أو أي آلة تنتج طاقة ميكانيكية. فمولد السيارة مثلاً، يدار من المحرك نفسه الذي يدفع السيارة.
ويشير المهندسون عادة إلى الأداة الميكانيكية التي تدير المولد بالمحرك الأساسي. ولكي نحصل على طاقة كهربائية إضافية من المولد يلزم للمحرك الأساسي أن يبذل طاقة ميكانيكية إضافية. فإذا كان المحرك الأساسي توربينًا بخاريًا، على سبيل المثال، يلزم زيادة سريان البخار في التوربين للحصول على كهرباء بكمية أكبر.
وفي عام 1831م اكتشف عالمان عمِلا منفردين ـ وهما مايكل فارادي من إنجلترا وهنري جوزيف من الولايات المتحدة ـ الأسس التي تحدد إنتاج الكهرباء من المولد الكهربائي؛ حيث وجدا أنه من الممكن توليد كهرباء في ملف من سلك نحاسي بوساطة تحريك الملف بالقرب من مغنطيس أو تحريك المغنطيس بالقرب من الملف. ويطلق على هذه العملية الحث (التأثير) الكهرومغنطيسي. ويُعرف الجهد أو القوة الدافعة الكهربائية المنتجة بالجهد المستحث أو القوة الدافعة الكهربائية المستحثة. وعندما يكون السلك جزءاً من دائرة مغلقة من الأسلاك، فإن الجهد المستحث يسبب مرور تيار كهربائي في الدائرة.
المولد البسيط. يتكون من مغنطيس على شكل U ولفة واحدة من السلك تسمى ملفًا. وتعرف المنطقة المحيطة بالمغنطيس، والتي يستشعر فيها بقوته بالمجال المغنطيسي. وللمساعدة في وصف المجال المغنطيسي علينا أن نتخيل بأن هناك خطوطاً من القوى خارجة من القطب الشمالي للمغنطيس، ثم تعود للمغنطيس خلال القطب الجنوبي. وتزداد خطوط القوى بزيادة قوة المغنطيس. فلو أدرت حلقة من السلك بين قطبي المغنطيس فإن جانبي الحلقة ستقطعان خطوط القوى المغنطيسية فَتُحَثُّ (تتولد) الكهرباء في الحلقة.
وفي نصف الدورة الأول يقطع جانب من سلك الحلقة خطوط القوى في الاتجاه إلى أعلى، بينما يقطعها الجانب الآخر في الاتجاه إلى أسفل، فتسري الكهرباء في اتجاه واحد خلال الحلقة. وفي منتصف الدورة تدور الحلقة موازية لخطوط القوى فلا تقطعها ولا تتولد الكهرباء. وفي النصف الآخر من الدورة فإن الجانب من سلك الحلقة الذي قطع خطوط القوى في الاتجاه إلى أعلى سابقاً يقطعها إلى أسفل هذه المرة، والجانب الآخر يقطعها إلى أعلى فتسري الكهرباء المُسْتَحثة في اتجاه معاكس للنصف الأول من الدورة. وفي نهاية الدورة تدور الحلقة مرة أخرى موازية لخطوط القوى فلا تتولد الكهرباء. ولذا ففي كل دورة كاملة يكون سريان اتجاه الجهد والتيار المولدين في نصف الدورة معاكسين للاتجاه في النصف الآخر. ويطلق على الجهد والتيار الجهد المتناوب (الفولتية المتناوبة) والتيار المتناوب. ويمكن زيادة الجهد المتناوب الذي ينتجه المولد بزيادة
1- قوة المجال المغنطيسي (عدد خطوط القوى)
2- السرعة التي يدور بها الملف
3- عدد لفات السلك التي تقطع المجال المغنطيسي
ويطلق على دورة كاملة من الملف خلال خطوط القوى الدورة. ويطلق على عدد الدورات في الثانية تردد الجهد، أو تردد التيار، وتقاس بوحدات تسمى الهرتز، وتساوي وحدة الهرتز دورة واحدة في الثانية. والتيار الكهربائي في معظم أنحاء العالَم تردده 50 هرتز ولكن بعض البلدان تستخدم 60 هرتز.
الكهرومغناطيسية
عند دوران حلقة من السلك بين قطبي مغنطيس يحدث تأثير كهرومغنطيسي مهم بالإضافة لتوليد الكهرباء. فعندما يحمل سلك الحلقة تيارًا، فإن التيار ينتج مجالاً مغنطيسيا حول السلك. ويعمل هذا المجال المغنطيسي ضد المجال المغنطيسي للمغنطيس، ويجعل دوران الحلقة صعبًا. وبزيادة الكهرباء المستحثة يزداد المجال المغنطيسي قوة، ويصعب عندئذ دوران الملف. ولهذا السبب فإن المحرك الأساسي الذي يدير المولد يلزمه زيادة الطاقة الميكانيكية لزيادة التيار الخارج من المولد. وتسبب هذه القوة المغنطيسية المتولدة في الملف دوران المحركات الكهربائية. ويمكن أن تعمل المولدات محركات والمحركات مولدات في حالة توافر ظروف ملائمة.
أجزاء المولد. يتكون المولد من جزءين رئيسيين هما الحافظة (غلاف الأرماتور)، وبنية المجال. وتحتوي الحافظة على ملفات من الأسلاك تستحث الكهرباء. وتقوم الحافظة بالأداء نفسه كالملف في المولد البسيط. أما بنية المجال فتقوم بالأداء نفسه كالمغنطيس في المولد البسيط حيث تنتج خطوط القوى المغنطيسية. وينتج المغنطيس الكهربائي خطوط القوى في معظم المولدات.
ويوجد في بعض المولدات الصغيرة مغنطيس دائم. ويطلق على هذا النوع من المولدات المغنيط أو المولد ذا المغنطيس الدائم. وملفات الحافظة وبنية المجال أسلاك معزولة من النحاس وملفوفة حول قلوب حديدية. وهذه القلوب الحديدية تقوي المجالات المغنطيسية.
وتتولد الكهرباء إما بجعل الحافظة تقطع خطوط القوى، أو جعل خطوط القوى تمر خلال الحافظة، ولذا يمكن لأي من الحافظة أو بنية المجال أن يكون هو الجزء الذي يدور في المولد، ويطلق على الجزء الذي يدور العضو الدوار والجزء الثابت العضو الساكن.
فاقد المولدات وكفاءتها
لا تتحول كل الطاقة الميكانيكية التي تدير المولدات إلى طاقة كهربائية. فبعضها يتحول إلى حرارة نتيجة للاحتكاك في كُرسي تحميل الجزء الدوار في المولد، وبعضها الآخر يفقد في مقاومة التيار في الملفات النحاسية وفي مقاومة خطوط القوى المغنطيسية في القلب الحديدي. ولذلك يلزم تبريد المولدات إما بدفع الهواء إلى داخلها أو بتمرير سائل بارد أو غاز حول الملفات والقلب الحديدي وكراسي التحميل. وتشير فعالية المولد إلى كفاءته في تحويل الطاقة الميكانيكية إلى طاقة كهربائية. وتعني كفاءة قدرها 90% أن 90% من الطاقة الميكانيكية الداخلة قد تحولت إلى طاقة كهربائية و 10% من الطاقة المتبقية قد تحولت إلى حرارة، ويلزم التخلص منها بنظام تبريد. ويمكن أن تصل كفاءة المولدات الكبيرة إلى 97%. أما كفاءة المولدات الصغيرة فتقل عن هذا بكثير.
مولدات التيار المتناوب
يُنتج المولد البسيط الذي سبق ذكره تياراً متناوبًا في حلقة السلك. ولكونه مولد تيار متناوب فإنه يحتاج إلى طريقة ما ليرسل التيار الذي ينتجه إلى الجهاز. وهذا يتم بوساطة حلقات تجميع أو حلقات انزلاق وقطع ثابتة من الكربون تسمى الفُرش. ويتصل طرفا نهاية كل ملف من الأسلاك بحلقة تدور مع دوران ملف الأسلاك. وتلامس الفرشاة كل حلقة ثم تنقل الكهرباء من الفرشاة بسلك يتصل بالأجهزة التي تستخدم الكهرباء. وبالتالي فالتيار الذي ينتج في ملف الأسلاك يسري إلى داخل المولد وخارجه خلال الحلقات والفرش.
كيف تتولد الكهرباء يمكن أن يتكون المولد البسيط من حلقة سلكية تدور في مجال مغنطيسي، ويتكون المجال المغنطيسي من سريان خطـوط القوى من القطب الشمالي إلى القطـب الجنـوبي للمغنطيس. وعندما يـدار السلك بين القطـبين يقطـع خطـوط القـوى ويتـولد التيـار الكهربائي في الحلقة. ويسري هذا التيار، على سبيل المثال، عند توصيل بصيلة بالنقطتين أ و ب.
كيف تعمل مولدات التيار المتناوب
تختلف مولدات التيار المتناوب العملية عن مولدات التيار المتناوب البسيطة في عدة أوجه. فالمولدات العملية مزودة بمولد إضافي يعرف بالمستثير. ويمد المستثير تياراً مستمراً للمغنطيس الكهربائي الذي يستخدم لإحداث مجال مغنطيسي في داخل مولد التيار المتناوب. وتتكون حافظة مولد التيار المتناوب من أسلاك من النحاس ملفوفة على شكل مئات من الملفات حول شقوق محفورة في قلب حديدي. ويتكون المغنطيس الكهربائي من قضبان نحاسية ملفوفة حول قلوب حديدية.
وفي معظم مولدات التيار المتناوب تكون الحافظة هي العضو الساكن، وبنية المجال هي العضو الدوار. ومعنى ذلك أن المغنطيس الكهربائي الذي ينتج بنية المجال، يدور لكي يقطع المجال المغنطيسي ملفات الحافظة. في تلك المولدات تستخدم حلقات الانزلاق لنقل التيار المستمر من المولد المستثير إلى المغنطيس الكهربائي في بنية المجال. وتتصل ملفات الحافظة مباشرة بأسلاك خارجية لنقل التيار المتناوب المتولد. وقد وجد المهندسون أنه من الأسهل اتباع تلك الطريقة في توصيل التيار المنخفض نسبيا من المستثير بوساطة حلقات الانزلاق وأخذ التيار العالي المتولد مباشرة من الحافظة. ويطلق على هذا النوع من مولدات التيار المتناوب المولدات المتزامنة، لأنها تنتج جهداً له ذبذبة متناسبة أو متزامنة مع سرعة العضو الدوار.
وقد يكون لبنية المجال في مولدات التيار المتناوب مغنطيس كهربائي واحد، ولكن، غالباً، يكون لها مغنطيسان أو ثلاثة أو أربعة أو أكثر من ذلك. وهذا يعني أن المجال المغنطيسي المنتج بوساطة بنية المجال يكون له اثنان أو أربعة أو ستة أو ثمانية أو أكثر من ذلك من الأقطاب ـ أي قطبان لكل مغنطيس كهربائي. وينتج المولد دورة واحدة متكاملة من التيار عندما يقطع زوجان من الأقطاب ملف الحافظة، بدلاً من دورة واحدة لكل دورة متكاملة من بنية المجال. وتبعًا لعدد المغنطيسات الكهربائية، فإن تلك المولدات تستطيع أن تنتج دورة، أو اثنتين، أو ثلاثًا، أو أربعًا أو أكثر لكل لفة من بنية المجال، أو الحافظة. فمولِّد التيار المتناوب ذو القطبين يلزمه أن يلف 3,000 لفة في الدقيقة ليولد تياراً تردده 50 هرتز أو يلف 3,600 لفة في الدقيقة ليولد تيارًا تردده 60 هرتز.
أنواع مولدات التيار المتناوب
يطلق على بعض مولدات التيار المتناوب أحادية الطور ويكون لحافظتها مجموعة من الملفات مماثلة لعدد الأقطاب في بنية المجال. ولكن غالبية مولدات التيار المتناوب لها ثلاث مجاميع من ملفات الحافظة لكل قطب، ولذا فهي تنتج ثلاثة تيارات في الوقت نفسه. وتعرف تلك الأنواع من المولدات بالمولدات ثلاثية الطور، وتنتج تلك المولدات قدرة أكبر من التي تنتجها المولدات أحادية الطور، كما أنها تحسن نقل القدرة الكهربائية واستخدامها.
استخدمات مولدات التيار المتناوب
المولدات الرئيسية في معظم محطات القدرة الكهربائية مولدات تيار متناوب، لسهولة رفع الجهد للتيار المتناوب أو خفضه باستخدام جهاز كهرومغنطيسي بسيط يعرف بالمحول. ويصمم المهندسون مولدات التيار المتناوب لتوليد تيار بجهد محدد. ويصل هذا الجهد في كثير من المولدات الضخمة إلى 18,000 أو 22,000 فولت. ويستعان بمحول رافع ليمكن رفع الجهد إلى 345,000 أو 765,000 فولت، لدفع التيار إلى مسافات طويلة. ويتم خفض الجهد بعديد من محولات الخفض إلى جهد يمكن استخدامه في المناطق التي تستخدم فيها الكهرباء. وعلى سبيل المثال تستخدم الأجهزة الكهربائية في المنازل بأستراليا وأوروبا 240 فولتًا، بينما تستخدم في الولايات المتحدة 115 فولتًا. أما في بعض المكاتب والمصانع فيلزمها مابين 480 فولتًا و 4,000 فولت.
وفي عام 1884م، صمم نيقولا تسلا ـ وهو مهندس صربي عاش في الولايات المتحدة الأمريكية ـ أول مولد تيار متناوب عديد الأطوار له أكثر من طور واحد. وصمم كذلك المحرك الكهربائي الذي يدور بالتيار المتناوب، وكذلك تمكن من تصميم أنظمة المحولات لتغيير جهد التيار المتناوب. وقد جعلت اختراعات تسلا أنه من الممكن اقتصاديا توليد التيار في أماكن بعيدة عن أماكن استخدامه.
مولدات التيار المستمر
لتغيير المولد البسيط إلى مولد للتيار المستمر يلزم عمل شيئين:
1- يجب توصيل التيارمن حلقة السلك الدوارة
2- يلزم جعل التيار يسير في اتجاه واحد فقط.
ويمكن لجهاز يسمى المبدل القيام بالعملين السابقين.
كيف تعمل مولدات التيار المستمر
يدور المبدل مع حلقة السلك كماتفعل تماماً حلقة الانزلاق مع العضو الدوار لمولد التيار المتناوب. ويقسم المبدل إلى فلقتين معزولتين، تسمى كل واحدة منهما فلقة المبدل، ويكون كل منهما معزولاً عن الآخر. وتوصل نهايتا حلقة السلك الدوارة بفلقتي المبدل، وتتلامس فرشتان كربونيتان متصلتان بالدائرة الخارجية، مع فلقتي المبدل. وتوصل إحدى الفرشتين التيار إلى خارج المولد، بينما تغذي الأخرى داخله. ولقد صمم المبدل بحيث تكون فلقة المبدل التي تحتوي على التيار الخارج دائما ملامسة للفرشاة الخارجة في الوقت المناسب، مهما تغير اتجاه التيار في داخل الحلقة. وفي مولد التيار المستمر الكبير يكون للحافظة العديد من ملفات الأسلاك وفلقات المبدل. وقد وجد المهندسون، بسبب المبدل، أنه من الضروري جعل الحافظة تعمل كعضو دوار بينما تعمل بنية المجال كعضو ساكن.
أنواع مولدات التيار المستمر
في بعض مولدات التيار المستمر، يأتي التيار المستمر اللازم للمغنطيس الكهربائي الذي يكوِّن بنية المجال من مصدر خارجي كما في معظم مولدات التيار المتناوب. ويطلق على هذا النوع من مولدات التيار المستمر مولدات الاستثارة المنفصلة. ويستخدم العديد من مولدات التيار المستمرجزءاً من التيار المستمر المنتج لتشغيل المغنطيسات الكهربائية اللازمة لها. وتعرف تلك المولدات بالمولدات ذاتية الاستثارة، ويعتمد مولد التيار المستمر ذاتي الاستثارة على المغنطيسية المتبقية، وهي جزء صغير من المغنطيسية يتبقى في المغنطيس الكهربائي بعد توقف المولد. ولولا وجود تلك المغنطيسية لكان من المحال تشغيل المولد ذاتي الاستثارة بعد توقفه.
ويمكن الحصول على التيار المستمر الذي تحتاجه المغنطيسات الكهربائية للمولدات ذاتية الاستثارة عن طريق ثلاث توصيلات مختلفة:
التوازي أو 2- التوالي أو 3- المركّب (وهي تركيبة من التوصيلات على التوازي والتوالي معاً).
ويعتمد نوع المولد المستخدم في أداء عمل معين على درجة التحكم في الجهد المطلوب. فالمولد الذي يستخدم في شحن البطاريات مثلاً، يحتاج إلى تحكم بسيط في الجهد، ولهذا يمكن استخدام مولد متصل على التوازي، بينما يحتاج المولد الذي يغذي المصعد إلى تحكم أكثر تعقيداً في الجهد، ولذا يستخدم مولد منفصل الاستثارة.
Popular Posts
-
طريقة برمجة ريموت huayu rm-l1130+8 هذا الريموت شامل يعمل على التلفزيونات القديمة وشاشات LCD & LED والبلازما وبعض الريسيفرات وطريقة...
-
مميزات الترانزستور : 1 - رخيص الثمن 2 - صغير الحجم وخفيف الوزن 3 - يعمل لفترة طويلة 4 - كفاءة قدرتة عالية 5 - يعمل الترانزستور عند ضغوط منخ...
-
مقدمة الترانزستور هو أحد العناصر الأساسية في عالم الإلكترونيات، وقد ساهم بشكل كبير في تطور التكنولوجيا الحديثة. يستخدم الترانزستور في العديد...
-
اكواد ريموت huayu rm-l1130+8 اكواد الريموت المتعدد لكل الاجهزة بالصورة اكواد الريموت ورقة الريموت المتعدد كتالوج ريموت huayu اكواد الريموت ا...
-
أعطال المقاومات: أسبابها وكيفية اكتشافها تعتبر المقاومات من العناصر الأساسية في الدوائر الكهربائية، ولكن قد تواجه بعض الأعطال التي تؤث...
-
دوائر الكترونية لمهندسين الالكترونيات والهواه ومحبى الالكترونيات ادخل هنا تجد الكثير من الدوائر http://adf.ly/2vopy يضم الموقع دوائر الكت...
-
طريقة برمجة ريموت HUAYU RM-L1130+8 للتلفزيونات والأجهزة الإلكترونية ريموت HUAYU RM-L1130+8 هو ريموت شامل يعمل مع العديد من الأجهزة، سواء كا...
-
اعطال المكثفات بشكل عام قد تتعرض المكثفات المستخدمة فى الدوائر الكهربية والالكترونية الى احد انماط الاعطال الاتية : دائرة القصر (شورت ) : ...
-
افضل كتب لتعليم الالكترونيات متاحة على الشبكة العنكبوتية دوائر كهربائية جزء اول نظرى تحميل تحميل الجزء العملى دوائر كهربائية جزء تانى نظ...
-
All Resolutions TP.HV530.PC821 Software Free Download Are you looking for the TP.HV530.PC821 Software Download? Do you wish to obtain the T...
المشاركات الشائعة
-
دوائر الكترونية لمهندسين الالكترونيات والهواه ومحبى الالكترونيات ادخل هنا تجد الكثير من الدوائر http://adf.ly/2vopy يضم الموقع دوائر الكت...
-
طريقة برمجة ريموت huayu rm-l1130+8 هذا الريموت شامل يعمل على التلفزيونات القديمة وشاشات LCD & LED والبلازما وبعض الريسيفرات وطريقة...
-
افضل كتب لتعليم الالكترونيات متاحة على الشبكة العنكبوتية دوائر كهربائية جزء اول نظرى تحميل تحميل الجزء العملى دوائر كهربائية جزء تانى نظ...
-
دائرة تحويل التيار المستمر الى تيار متردد 12 فولت dc الى 120 ac فى الصورة دائرة انفنتر (Inverter) شرح الدائرة : هذه الدائرة تاخد 12 فولت تي...
-
السلام عليكم اخوانى جايبلك النهارده طريقة صنع راديو بنفسك هذا الراديو لايحتاج الى جهد كهربائى لتشغيله شرح دائرة الراديو فى بعض اجهزة الرادي...
-
موقع الكترونيات الغانم دخول موقع الكترونيات الغانم https://short-jambo.ink/27Ell او https://cloaking.link/VKxQ او https://tii.la/cHPVVHuV6...
-
ابسط دائرة لشحن بطارية السيارة اتوماتيك بدون تدخل منك عندما تكون البطارية مشحونة بالكامل سيفصل الريلاى الكهرباء عن البطارية مكونات الدائرة :...
-
دائرة صاعق كهربى بسيط القطع الالكترونية المطلوبة لتنفيذ الدائرة Parts List بطارية 9 فولت R1 = مقاومة كربونية قيمتها 1 كيلو اوم R2 = مقاومة ك...
-
بدائل الترانزستورات الحديثة الاخوة الفنيين اقدم لكم هذا الكتاب وهو كتاب بدائل الترانزستور ويضم معظم الترانزستورات الحديثة وبدائلها لتحميل ...
-
دائرة بسيطه جدا فى تنفذها لشحن بطارية 12 فولت او 6 فولت حسب الاختيار كيف تعمل الدائرة لشحن بطارية 12 فولت يجب فتح السوتش sw1 ولشحن يطارية 6...